128. Reaktionen der valenzpolaromeren Ketenform mesoionischer Heterocyclen mit 3-Dimethylamino-2*H*-azirinen

von Josef Lukáč¹) und Heinz Heimgartner²)

Organisch-chemisches Institut der Universität Zürich, Winterthurerstrasse 190, CH-8057 Zürich

Herrn Prof. Dr. h.c. André S. Dreiding zum 60. Geburtstag gewidmet

(8.III.79)

Reactions of valencepolaromeric ketenes of mesoionic heterocycles with 3-dimethylamino-2H-azirines

Summary

Reactions of the 3-dimethylamino-2H-azirines 1a and 1b with the mesoionic oxazole 5 and the mesoionic dithiole 6 in acetonitrile at room temperature yield the 1:1 adducts 11, 12, 19 and 20, respectively (*Schemes 5* and 8). These products can be formulated as adducts of the aminoazirines and the ketenes 5a and 6a, which are valence polaromeric forms of the mesoionic heterocycles 5 and 6 (*Scheme 2*).

The structure of the adducts has been elucidated by spectral data and their comparison with the data of (Z)-11, the structure of which has been established by X-ray [19]. Oxidation of the 1:1 adducts with $KMnO_4$ in a two-phase system yields 4-dimethylamino-3-oxazolin-2-ones (cf. Scheme 6) by cleavage of the exocyclic C, C-double bond. A mechanism for the formation of the adducts is given in Scheme 9: Nucleophilic attack of 1 on the ketene leads to a primary adduct of type a, which undergoes cleavage of the former N(1), C(2)-azirine bond to give adducts of type 11 or 19. The N(1), C(2)-ring opening of 1a in the reaction with ketenes contrasts with the N(1), C(3)-opening of 1a in the addition with, for instance, isothiocyanates. These different ring openings are explained by the difference in nucleophilicity of the heteroatoms X and Y in a' (Scheme 10).

1. Einleitung. – Die von Rens & Ghosez [1] erstmals beschriebenen, gespannten dreigliedrigen Amidine vom Typ des 3-Dimethylamino-2, 2-dimethyl-2H-azirins (1) haben sich als sehr reaktive Verbindungen erwiesen [2]. Die durch die Donor-Eigenschaft der Dimethylaminogruppe aktivierte C, N-Doppelbindung reagiert schon bei Raumtemperatur mit Heterokumulenen (vgl. dazu die in [2] [3] zit. Lit.). So werden mit Schwefelkohlenstoff [4] [5], Tosyl- [6], Benzoyl- [6] [7] und

¹) Teil der Dissertation von J. L., Universität Zürich 1979; gegenwärtige Adresse: *Hefti AG*, Chemische Fabrik, Hohlstrasse 507, CH-8048 Zürich.

²) Korrespondenzautor.

sterisch gehinderten Alkylisothiocyanaten [6] (vgl. auch [8]) (1:1)-Addukte gebildet, die als Valenzpolaromere³) in der dipolaren cyclischen (2) oder der offenkettigen Heterokumulen-Form (2a) vorliegen können *(Schema 1)*. Die Umsetzung von 1 mit Diphenylketen liefert als Hauptprodukt 4-Dimethylamino-5, 5-dimethyl-2-diphenylmethyliden-3-oxazolin (3) [8-10].

Es war nun von Interesse zu prüfen, ob sich Aminoazirine vom Typ 1 als Abfangreagentien für offenkettige Heterokumulene eignen, die als valenzpolaromere Form von cyclischen, mesoionischen Verbindungen des Typs 4^4) auftreten (Schema 2), oder ob sie allenfalls mit den mesoionischen Verbindungen 1,3-dipolare Cycloadditionen eingehen⁵).

³) Durch den Begriff Valenzpolaromerie soll die F\u00e4higkeit einer Verbindung charakterisiert werden, in einer dipolaren (zwitterionischen), cyclischen Form und in einer nicht dipolaren (ungeladenen), offenkettigen Form oder vice versa auftreten zu k\u00f6nnen [4].

⁴⁾ Für eine ausführliche Übersicht mesoionischer Verbindungen s. [11].

^{5) 1,3-}Dipolare Cycloadditionen mit 3-Phenyl-2*H*-azirinen als Dipolarophile sind bekannt (vgl. [12]).

Als erste Vertreter mesoionischer Heterocyclen wurden das Oxazolylium-5olat 5 and das 1,3-Dithiolylium-4-olat 6 (Schema 2) eingesetzt.

Für das 3-Methyl-2,4-diphenyloxazolylium-5-olat (5, ein «Münchnon») ist das Phänomen der Valenzpolaromerie bekannt.

Das Vorliegen der mesoionischen Form ist durch die spektralen Daten belegt [13]. Die valenzpolaromere offenkettige Ketenstruktur 5a konnte spektroskopisch nicht nachgewiesen werden, liess sich jedoch z.B. mit Iminen unter Bildung von (1:1)-Addukten des Typs 7 (Schema 3) abfangen [14] (vgl. auch [13]). Eine analoge Reaktion wurde auch mit Carbodiimiden als Abfangreagenzien beobachtet [14]. Bei diesen Additionsreaktionen handelt es sich formal um regiospezifische [2+2]-Cycloadditionen der C,N-Doppelbindungen an die C,C-Doppelbindung des Ketens 5a. Die mesoionische «Münchnon-Form» 5 andererseits geht mit geeigneten Dipolarophilen 1,3-dipolare Cycloadditionen ein [15]. Dabei erfolgt die Addition formal mit der Azomethinium-ylid-Grenzstruktur 5b (Schema 2), üblicherweise gefolgt von der Abspaltung von Kohlendioxid. Bei der Reaktion von 5 mit «Cyclopentadienchinon» konnte jedoch das primäre [3+2]-Cycloaddukt 8 isoliert werden [16] (Schema 3).

Die Synthese des mesoionischen 2,5-Diphenyl-1,3-dithiolylium-4-olats (6) wurde schon 1968 beschrieben [17]. Zu Beginn der vorliegenden Arbeit lagen keine Hinweise für das Auftreten der valenzpolaromeren Ketenform 6a vor (Schema 2). Vor kurzem wurde nun die entsprechende Ketenform 9a des 1,3-Dithiolylium-4-olats 9 mit Methanol abgefangen [18] (Schema 4)⁶).

In einer vorläufigen Mitteilung [19] haben wir die Struktur eines (1:1)-Adduktes aus 3-Dimethylamino-2,2-dimethyl-2*H*-azirin ($1a \equiv 1$, $R = CH_3$) und dem Münchnon 5 beschrieben. In der vorliegenden Arbeit werden weitere Abfangversuche und chemische Strukturbeweise sowie die vollständigen experimentellen Daten wiedergegeben.

⁶) Der bei dieser Reaktion gebildete Ester 10 könnte allenfalls auch durch direkten nucleophilen Angriff von Methanol an C(4) der mesoionischen Struktur 9 gebildet werden [18].

2. Umsetzung von 3-Dimethylamino-2*H*-azirinen (1) mit 3-Methyl-2,4-diphenyloxazolylium-5-olat (5). – 3-Dimethylamino-2, 2-dimethyl-2*H*-azirin (1a) setzt sich mit 5 in Acetonitril bei Raumtemperatur zu einem (1:1)-Addukt um, das nach Chromatographie an Kieselgel und Umkristallisation aus Acetonitril in 73% Ausbeute isoliert wird. Bei den farblosen Kristallen vom Smp. 208-210° handelt es sich aufgrund der *Röntgen*-Kristallstrukturanalyse [19] um (*Z*)-*N*-[*a*-(4'-Dimethylamino-5', 5'-dimethyl-3'-oxazolin-2'-yliden)benzyl]-*N*-methylbenzamid⁷) ((*Z*)-11, *Schema 5*). Neben den in [19] wiedergegebenen spektralen Daten (UV., IR., ¹H-

NMR. und MS., vgl. exper. Teil) ist das ¹³C-NMR.-Spektrum⁸) von (Z)-11 von besonderem Interesse (*Tabelle*). In Deuteriochloroform absorbieren die beiden Atome C(2') und C(4') beide bei 173,1 ppm, in Hexadeuteriodimethylsulfoxid (DMSO-d₆) jedoch bei 173,4 und 171,6 ppm⁹). Das Carbonyl-C-Atom der Benzamidgruppe erscheint wie erwartet bei 159,4 ppm (bei 159,8 in DMSO-d₆), C(a) bei 103,4 ppm (101,9) und C(5') bei 83,1 ppm (83,2). Die hier getroffene Zuordnung der Signale war erst mit Hilfe der ¹³C-NMR.-Spektren einer Reihe von Vergleichssubstanzen möglich [20] (vgl. auch *Tabelle*). Bemerkenswert ist vor allem die chemische Verschiebung von ca. 173 ppm für das Amidin-C-Atom C(4'), da der typische Absorptionsbereich für Amidin-C-Atome bei etwa 150-

⁷) In [19] wurde (Z)-11 als 4-Dimethylamino-5,5-dimethyl-2-[a-(N-methylbenzamido)benzyliden]-3oxazolin bezeichnet. Aufgrund der IUPAC-Nomenklatur muss dieser Name durch den hier eingeführten ersetzt werden.

^{8) &}lt;sup>13</sup>C-NMR.-Spektren bei 25,2 MHz; Angaben der chemischen Verschiebungen der protonen-entkoppelten Signale in ppm bezogen auf internes TMS (= 0 ppm).

⁹⁾ Welches dieser Signale C(2') bzw. C(4') zugeordnet werden muss, wurde nicht untersucht.

160 ppm liegt (vgl. z. B. $[21]^{10})^{11}$). Das ¹H-NMR.-Spektrum¹²) von (Z)-11 weist bei 28° für die beiden C-Methylgruppen zwei Singulette bei 1,54 und 1,19 ppm auf (*Fig. 1*, Spektrum A). Wie die Projektion der Molekelstruktur zeigt [19], kommt die eine der Methylgruppen in den abschirmenden Bereich der Benz-

 Tabelle. Chemische Verschiebungen in den ¹³C-NMR.-Spektren der 3-Oxazolinderivate 3, 11, 12, 16 und 20 in Deuteriochloroform^a)

	C(2')	C(4′)	C(5')	C (<i>a</i>)	(CH ₃) ₂ N	(CH ₃) ₂ C(5')	CH ₃ N	C(1)
Physical Street	COPh							<u> </u>
	173,1 (173,4: 171,6)		83,1 (83,2)	103,4 (101,9)	38,8 (38,6)	25,1; 24,6 (24 7: 24 1)	35,3 (34,8)	159,4 (159.8)
$R = CH_3: 11^{b}$ $R = Ph_1 = 120$)		(02,2)			(21,7, 21,1)		(100,0)
K=rn. 12.)	173,5; 1 (172,0; 1	170 ,3, 170 ,2 170 ,3, 170 ,2	88,7 (88,6)	105,0, 104,6 (103,1, 102,9)	38,7	21,1 (20,6)	35,6, 35,3 (35,0, 34,9)	162,0, 161,8 (161,8)
NS	.CSPh							
	174,9; 168,1		86,5	^d)	39,5, breit	21,4	-	e)
	165.6	182 7	84.6	_	40.2.38.5	20.8		
1 (_{Ph} 16 ^f)	105,0	102,7	01,0		-10,2, 30,3	20,0		-
	159,1	171,9	83,6	98,4	38,8	25,0	-	-

a) Angaben in ppm bezogen auf TMS (= 0 ppm); in Klammern chemische Verschiebungen in DMSO-d₆.

^b) Spektrum von (Z)-11.

c) Spektrum eines (E)/(Z)-Isomerengemisches.

d) Das im Bereich der aromatischen Protonen absorbierende C(a) konnte nicht zugeordnet werden.

e) Das Signal für C(1) konnte nicht lokalisiert werden.

^f) Chemische Verschiebungen von C(2), C(4), C(5) und $H_3C-C(5)$.

- ¹⁰) 3,6-Bis(dimethylamino)-2,2,5,5-tetramethyl-2,5-dihydropyrazin [22] zeigt für das Amidin-C-Atom eine chemische Verschiebung von 162,6 ppm; im dreigliedrigen Amidin 1a absorbiert C(3) bei 167,7 ppm [23]. Für Amidine, die an N(2) ein zusätzliches π-System tragen, wird allgemein eine Verschiebung der Amidin-C-Absorption nach tiefem Feld beobachtet [20]. Dieser Effekt ist besonders ausgeprägt in cyclischen N²-Acyl-amidinen (vgl. z.B. 16 in der Tab. sowie [24]). Über ¹³C-NMR.-Spektren von N²-Acyl-amidinen soll später ausführlicher berichtet werden.
- ¹¹) In [25] wurden für 13 die Absorptionen für C=O und C=N nicht korrekt zugeordnet. Aufgrund der nichtentkoppelten ¹³C-NMR.-Spektren muss die Zuordnung wie folgt getroffen werden ¹⁰ 0

¹²) ¹H-NMR.-Spektren in CDCl₃; Angabe der chemischen Verschiebungen in ppm bezogen auf internes TMS (= 0 ppm); s=Singulett, m=Multiplett.

1240

amidogruppierung zu liegen, was zur Verschiebung nach hohem Feld (1,19 ppm) führt. Nach mehrtägigem Stehen der Lösung von (Z)-11 in Deuteriochloroform werden im ¹H-NMR.-Spektrum für die C-Methylgruppen vier Singulette bei 1,58, 1,54, 1,20 und 1,06 ppm beobachtet (*Fig. 1*, Spektrum C). Kristallisation der Substanz aus Chloroform liefert wieder die ursprüngliche Verbindung vom Smp. 208-210°. Es liegt deshalb die Vermutung nahe, dass es sich bei den ineinander überführbaren Substanzen um die Stereoisomeren (Z)-11 und (E)-11 handelt¹³).

Das Rohprodukt der Umsetzung von 1a und 5 zeigt im ¹H-NMR.-Spektrum ebenfalls vier Singulette für C-Methylgruppen in etwa gleicher Intensität, d.h. die beiden Stereoisomeren liegen im Rohprodukt in etwa gleichen Mengen vor. Bei einem weiteren Versuch, das Rohprodukt zu reinigen, wurden nach Chromatographie an Aluminiumoxid und Umkristallisation aus Acetonitril/Äther neben (Z)-11 vom Smp. 208-210° farblose Kristalle vom Smp. 186,9-187,8° erhalten. Die Massen- und IR.-Spektren dieses Produktes sind nahezu identisch mit denjenigen von (Z)-11. Im ¹H-NMR.-Spektrum absorbieren die 10 aromatischen Protonen als Multiplett bei 7,95-6,9 ppm, CH₃N und (CH₃)₂N als Singulette bei 3,20 bzw. 3,07 ppm und die C-Methylgruppen bei 1,58 und 1,06 ppm (*Fig. 1*, Spektrum B). Nach mehrtägigem Stehen der Deuteriochloroform-Lösung bei

Fig. 1. 'H-NMR.-Teilspekiren der Stereoisomeren (Z)-II und (E)-11 in CDCl₃ bei 28°

Fig. 2. ¹H-NMR.-Teilspektren der C-Methylregion von 11 in DMF-d₇ bei verschiedenen Temperaturen

¹³) Ob es sich tatsächlich um (E, Z)-Isomere an der exocyclischen C,C-Doppelbindung handelt oder allenfalls um stabile Konformere, ist zur Zeit nicht mit Sicherheit zu entscheiden.

Raumtemperatur erscheinen für die C-Methylgruppen wiederum vier Singulette mit den oben erwähnten chemischen Verschiebungen (*Fig. 1*, Spektrum C). Nach dem Einengen der Lösung fallen Kristalle vom Smp. 208-210° aus, die sich im ¹H-NMR.-Spektrum als identisch mit (Z)-11 erweisen.

Die Umwandlung von (Z)-11 in die isomere Verbindung vom Smp. 187-188°, der wir die Konstitution von (E)-11 zuschreiben, kann beim Erwärmen einer Heptadeuteriodimethylformamid-Lösung ¹H-NMR.-spektroskopisch verfolgt werden (*Fig. 2*). Dabei koaleszieren die *C*-Methylsignale von (Z)-11 bei *ca.* 150° zu einem breiten Signal bei *ca.* 1,4 ppm. Nach dem Abkühlen der Lösung auf Raumtemperatur erscheinen für die *C*-Methylgruppen wieder vier Singulette bei 1,56, 1,54, 1,32 und 1,14 ppm in vergleichbaren Intensitäten (*Fig. 2*), d.h. die Isomeren (*Z*)-11 und (*E*)-11 liegen im Verhältnis von *ca.* 1:1 vor. Bei der nach längerem Stehen aus der Lösung kristallisierenden Substanz handelt es sich dagegen wieder um reines (*Z*)-11 (Smp. 208-210°, *ca.* 85% zurückisoliert).

Zusätzlich zur *Röntgen*-Kristallstrukturanalyse ist die Struktur von 11 auf chemischem Wege durch oxydativen Abbau bewiesen worden. Bei der Behandlung von 11 mit Kaliumpermanganat im Zweiphasensystem Chloroform/Wasser bei Raumtemperatur während 24 Std. wird die exocyclische Doppelbindung gespalten. Als einzige Produkte fallen in 54% Ausbeute *N*-Benzoyl-*N*-methyl-benzamid (14) und in 21% Ausbeute 4-Dimethylamino-5, 5-dimethyl-3-oxazolin-2-on (15) an (Schema 6). Die Struktur von 14 wurde mit Hilfe der Spektren und des Smp. [26] sichergestellt. Das Acylamidin 15 absorbiert im UV.-Spektrum bei 234 nm (4,26) (vgl. [24] [27]) und im IR.-Spektrum (CHCl₃) bei 1758 (C=O) und 1611 cm⁻¹ (C=N). Das ¹H-NMR.-Spektrum zeigt für die Protonen der (CH₃)₂N-Gruppe zwei Singulette bei 3,25 bzw. 3,21 ppm. Daraus kann geschlossen werden, dass für die Struktur des 4-Dimethylamino-3-oxazolin-2-ons 15 in Chloroformlösung die dipolare Form (Schema 6) einen wesentlichen Beitrag liefert (vgl. [27]).

Die Umsetzung des Münchnons 5 mit 3-Dimethylamino-2-methyl-2-phenyl-2*H*-azirin (1b) in Acetonitril bei Raumtemperatur liefert nach Chromatographie und Umkristallisation in 68% Ausbeute ein (1:1)-Addukt vom Smp. 200,5-201,6°. Aufgrund der spektralen Daten (s. exper. Teil) und deren Vergleich mit denjenigen von 11 kommt dem Addukt die Struktur 12 zu (Schema 5). Möglicherweise handelt es sich auch im Festkörper um ein Gemisch von (*E*)- und (*Z*)-12. Das Vorliegen eines Gemisches der Stereoisomeren in Lösung ist aus den NMR.-Spektren ersichtlich: Im ¹H-NMR.-Spektrum wird für die (CH₃)₂N-Gruppe ein

breites Signal bei 2,8 ppm beobachtet, und die CH₃N- und (CH₃)₂C-Gruppen erscheinen jeweils als zwei Singulette bei 3,21 und 3,20 (Intensitätsverhältnis 1:3) bzw. bei 1,91 und 1,31 ppm (Intensitätsverhältnis 3:1). Das ¹³C-NMR.-Spektrum zeigt für C(1), C(a), C(2'), C(4') und CH_3N ebenfalls eine Verdoppelung der Signale (Tabelle). Die Struktur von 12 wird wiederum durch oxydative Spaltung der C, C-Doppelbindung bestätigt. Dabei werden neben N-Methylbenzamid und 14 in 52% Ausbeute 4-Dimethylamino-5-methyl-5-phenyl-3-oxazolin-2-on (16) erhalten (Schema 6). Das UV.-Spektrum von 16 weist ein Maximum bei 235 nm (4,23) auf, das IR.-Spektrum (KBr) intensive Banden bei 1765 (C=O) und 1616 cm⁻¹ (C=N). Im ¹H-NMR.-Spektrum absorbiert die (CH₃)₂N-Gruppe als zwei Singulette bei 3,24 und 2,76 ppm, d.h. die exocyclische C, N-Bindung weist auch in diesem Falle erheblichen Doppelbindungscharakter auf. Das ¹³C-NMR.-Spektrum von 16 (Tabelle) zeigt zwei Signale für quartäre C-Atome bei 182,7 und 165,5 ppm. Im nicht-entkoppelten Spektrum erscheint das Signal bei 182,7 ppm als hochaufgespaltenes Multiplett, während bei 165,6 ppm immer noch ein Singulett beobachtet wird. Damit ist eine eindeutige Zuordnung dieser Signale möglich: Die Absorption bei 182,7 ppm entspricht dem Amidin-C(4), diejenige bei 165,6 ppm dem Carbonyl-C(2). Die Aufspaltung des Signals für C(4) ist auf die ${}^{3}J(C, H)$ -Kopplung mit den N- und C-Methylgruppen sowie mit den o-ständigen Aromatenprotonen zurückzuführen. Die (CH₃)₂N-Gruppe absorbiert auch im ¹³C-NMR.-Spektrum als zwei Singulette bei 40,2 und 38,5 ppm.

4-Acetyl-3-methyl-2-phenyloxazolylium-5-olat (17) geht mit dem Aminoazirin 1a in Acetonitril bei Raumtemperatur keine Reaktion ein. Bei erhöhter Temperatur tritt eine Vielzahl von Zersetzungsprodukten auf. Werden dagegen 1a und 17 in Alkoholen gelöst, bildet sich schon bei Raumtemperatur jeweils ein neues Produkt, das im Falle von t-Butylalkohol als Lösungsmittel in 69% Ausbeute isoliert wird. Dabei handelt es sich aber nicht um ein Azirinaddukt, sondern um 2-(N-Methylbenzamido)-3-oxo-buttersäure-t-butylester (18), d. h. das «Alkohol-Abfangprodukt» der valenzpolaromeren Ketenform 17a (Schema 7). Die Struktur des Adduktes folgt aus den spektralen Daten (s. exper. Teil). Das ¹H-NMR.-Spektrum zeigt, dass 18 in Chloroformlösung fast ausschliesslich als Enol vorliegt (δ (OH)=12,2 ppm). Wie ein Kontrollversuch zeigt, bildet sich 18 in reinem t-Butylalkohol, d.h. ohne Zusatz von 1a, unter sonst gleichen Bedingungen nicht.

3. Umsetzung von 3-Dimethylamino-2*H*-azirinen (1) mit 2,4-Diphenyl-1,3-dithiolylium-5-olat (6). – Ein Gemisch von 6 und 3-Dimethylamino-2,2-dimethyl-2*H*-azirin (1a) in Acetonitril wird unter Rückfluss erhitzt. Nach der üblichen

Aufarbeitung, Chromatographie an Aluminiumoxid und Umkristallisation werden 3,4-Diphenyl-1,2-dithia-3-cyclopenten-5-on (21) in gelblichen Kristallen vom Smp. 116,6-117° (Äther) in 22% Ausbeute und Dithiobenzoesäure-[a-(4'-dimethyl-amino-5',5'-dimethyl-3'-oxazolin-2'-yliden)benzyl]ester (19) in dunkelroten Kristallen vom Smp. 192,8-193,2° (Essigester) in 17% Ausbeute erhalten (Schema 8).

Die Struktur von **21** kann anhand von Literaturangaben eindeutig festgelegt werden [28]. Die Verbindung **19** zeigt im UV.-Spektrum Absorptionsmaxima bei 440 (3,21), 317 (4,47) und 231 nm (4,35). Im IR.-Spektrum (CHCl₃) tritt eine Bande bei 1638 (C=C) und eine intensive, breite Bande bei 1565 cm⁻¹ (Amidin) auf. Im ¹H-NMR.-Spektrum absorbieren jeweils zwei aromatische Protonen als Multiplett bei 8,2-8,0 und 7,8-7,7 ppm und 6 aromatische Protonen als Multiplett im Bereich von 7,5-7,0 ppm. Das verbreiterte Singulett bei 3,17 ppm ist der (CH₃)₂N-Gruppe zuzuordnen, die Protonen der (CH₃)₂C-Gruppe erscheinen bei 1,59 ppm.

Das ¹H-NMR.-Spektrum eines chromatographierten, aber nicht umkristallisierten Produktes aus 6 und 1a weist für die (CH₃)₂N- und (CH₃)₂C-Gruppen jeweils zwei Singulette bei 3,15 und 3,05 bzw. 1,67 und 1,58 ppm auf, d.h. bei dieser Substanzprobe handelt es sich wiederum um ein Stereoisomerengemisch. Die beiden Isomeren lassen sich durch fraktionierte Kristallisation trennen, wobei das oben beschriebene Stereoisomere in kristalliner Form, das zweite jedoch nur als rotes Öl erhalten wird. Wir nehmen an, dass es sich bei den beiden Isomeren 19A und 19B, analog zu den in Kap. 2 beschriebenen Produkten 11 und 12, um (E)/(Z)-Isomere handelt. Eine Zuordnung der Konfigurationen kann jedoch noch nicht getroffen werden. Mit Hilfe der ¹H-NMR.-Spektroskopie lässt sich aber zeigen, dass sich auch 19A und 19B in Lösung leicht ineinander umwandeln. Werden Lösungen von 19A und 19B in Deuteriochloroform bei Raumtemperatur stehen gelassen, liegen nach 48 Std. jeweils (1:1)-Gemische der beiden Isomeren vor. Nach Zugabe von Äther kristallisiert aus beiden Proben 19A in Form dunkelroter Kristalle aus, während 19B aus der Mutterlauge als rotes Öl gewonnen wird.

Die Umsetzung des mesoionischen Dithiols 6 mit dem 2-Methyl-2-phenyl-2*H*-azirin 1b liefert 3% 21 und 39% Dithiobenzoesäure-[a-(4'-dimethylamino-5'methyl-5'-phenyl-3'-oxazolin-2'-yliden)benzyl]ester (20, Schema 8). Die Struktur von 20 wird anhand der spektralen Daten und deren Vergleich mit 19 bewiesen. Im ¹H-NMR.-Spektrum erscheinen neben dem Multiplett der 15 aromatischen Protonen ein breites Singulett für die rotationsbehinderte (CH₃)₂N-Gruppe sowie ein Singulett für die Methylgruppe an C(5'). Im Spektrum der frisch gelösten Probe fehlt ein Hinweis für das Vorliegen eines Stereoisomerengemisches. Nach zweiwöchigem Stehenlassen der Substanz in Deuteriochloroform wird hingegen für die (CH₃)₂N-Gruppe und für CH₃-C(5') eine Signalverdoppelung beobachtet, was auf das Vorliegen eines zweiten Stereoisomeren hindeutet.

Die oxydative Spaltung der Addukte 19 und 20 mit Kaliumpermanganat im Zweiphasensystem liefert die 3-Oxazolin-2-one 15 und 16 (Schema 6) in 38% bzw. 94% Ausbeute, was zusammen mit den Elementaranalysen, den Massenspektren und den übrigen spektralen Daten der (1:1)-Addukte 19 und 20 deren Strukturen beweist.

4. Diskussion. – In der Einleitung wurde die Frage gestellt, ob 3-Amino-2*H*-azirine 1 als Abfangreagentien für Heterokumulene, die als Valenzpolaromere von mesoionischen Heterocyclen in spektroskopisch nicht nachweisbaren Mengen vorliegen können, geeignet sind. Im Falle des mesoionischen Oxazols 5 und des mesoionischen Dithiols 6 kann diese Frage bejaht werden. Anhand der *Röntgen*-

Kristallstrukturanalyse [19] von (Z)-11 (Schema 5) und den oxydativen Spaltungen der (1:1)-Addukte zu den 3-Oxazolin-2-onen 15 und 16 (Schema 6) ist ersichtlich, dass die Additionsreaktionen analog zur Addition von Diphenylketen und 1a [8-10] verlaufen. Das primär gebildete Zwitterion a (Schema 9) geht offensichtlich eine Spaltung der ursprünglichen N(1), C(2)-Einfachbindung von 1 zu einem 1-Aza-allylkation gefolgt von einem Ringschluss durch das Sauerstoffatom ein (Weg a). Das alternative (1:1)-Addukt b, das aus dem 1-Azaallylkation via Ringschluss durch das «Keten-C-Atom» entstehen könnte (Weg b), wird nicht gefunden, ebensowenig wie die über einen direkten Angriff dieses C-Atoms oder des Sauerstoffatoms an der C, N-Doppelbindung von a (Wege c bzw. d) formulierbaren zwitterionischen Produkte d bzw. f (entsprechend der Spaltung der N(1), C(3)-Doppelbindung von 1).

In den schon früher beschriebenen Umsetzungen von 1a mit Schwefelkohlenstoff und Isothiocyanaten (s. Einleitung) werden nur Addukte isoliert, die über eine Spaltung der N(1), C(3)-Bindung des Aminoazirins gebildet werden (vgl. die in [2] [3] zit. Lit.), d. h. via Reaktionswege, die c) und d) in Schema 9 entsprechen. Der Unterschied zur Reaktion mit Ketenen (N(1), C(2)-Spaltung) kann mit der unterschiedlichen Nucleophilie der Heteroatome im Primäraddukt vom Typ a' (Schema 10) erklärt werden. Es gilt nämlich ganz allgemein, dass die aus 1a und Elektrophilen gebildeten Iminiumaziridine a' in Abwesenheit von guten Nucleophilen eine Spaltung der ursprünglichen C, N-Einfachbindung zu 1-Azaallylkationen vom Typ g eingehen, während gute Nucleophile das Amidinium-C-Atom von a' angreifen und die dabei gebildeten Aziridine unter Spaltung der ursprünglichen N(1), C(3)-Doppelbindung weiterreagieren [2] [29]. Im primären Heterokumulen-Addukt a' erfolgt somit im Falle von X = O, Y = CRR' eine N(1), C(2)-Ringöffnung zu g, das die Cyclisierung zum Ketenaddukt 22 eingeht. Handelt es sich bei X dagegen um ein Schwefelatom, wird durch intramolekulare nucleophile Addition das Zwischenprodukt h gebildet, aus dem unter Bruch der zentralen Bindung das stabilisierte Zwitterion 23 entsteht.

Schaumann et al. haben gezeigt, dass die Selektivität der Ringöffnung aber auch von der Art der Substituenten an C(2) des Aminoazirins 1 abhängig ist. So reagieren 3-Amino-2-phenyl-2*H*-azirine vom Typ 1b auch bei der Umsetzung mit Schwefelkohlenstoff und Methylisothiocyanat unter Spaltung der C, N-Einfachbindung [5b] [25]. Die Ursache dafür dürfte in der besseren Stabilisierung des bei der N(1), C(2)-Ringöffnung entstehenden 1-Aza-allylkations liegen.

Einer Erklärung bedarf noch die bei der Umsetzung des mesoionischen 1,3-Dithiols 6 mit den Aminoazirinen 1 beobachtete Isomerisierung zum 1,2-Dithiacyclopentenon 21. Diese Umlagerung kann in Analogie zur photochemischen Isomerisierung von 24 zu 25 [30] formuliert werden (Schema 11). Ob die Umlagerung von 6 zu 21 rein thermisch oder unter dem Einfluss von Licht erfolgt ist, wurde nicht überprüft.

Wir danken unseren analytischen Abteilungen für Elementaranalysen und Spektren, insbesondere Herrn Dr. W. Schwotzer für die Aufnahme der ¹³C-NMR.-Spektren, den Herren M. Birnstiel und T. Egolf für experimentelle Mitarbeit und dem Schweizerischen Nationalfonds zur Förderung der wissenschaftlichen Forschung für die Unterstützung der vorliegenden Arbeit.

Experimenteller Teil

Allgemeine Bemerkungen. Vgl. [4] [31]. Bestimmung der Smp. auf einem Mettler-FP/2-Gerät; UV.-Spektren in 95proz. Äthanol, Angabe von $\lambda_{max}(\varepsilon)$ in nm, min.=Minimum, S=Schulter; IR.-Spektren in KBr; ¹³C-NMR.-Spektren, wenn nicht anders vermerkt, in CDCl₃; MS.: hochaufgelöste Pike sind mit * bezeichnet. Präparative DC. (präp. DC.) an PSC.-Fertigplatten (Kieselgel 60 F₂₅₄ oder Aluminiumoxid F₂₅₄ (Typ T) Merck).

1. Umsetzung von 3-Methyl-2,4-diphenyloxazolylium-5-olat (5) mit 3-Dimethylamino-2*H*-azirinen (1). 1.1. Addition von 3-Dimethylamino-2,2-dimethyl-2H-azirin (1a). Zu 295,0 mg (1,17 mmol) 5 [14] in 3 ml trockenem Acetonitril wurde unter Argon eine Lösung von 160,0 mg (1,4 mmol) 1a in 3 ml Acetonitril gegeben, 2 Std. gerührt und dann die Lösung auf etwa 0,5 ml eingeengt. Reinigung mittels präp. DC. (Kieselgel, Essigester) ergab 374,5 mg (87,7%) rohes N-[a-(4'-Dimethylamino-5',5'-dimethyl-3'-oxazolin-2'-yliden)benzyl]-N-methylbenzamid (11). Nach Umkristallisation aus Acetonitril wurden 311,2 mg (72,9%) (Z)-11 als farblose Kristalle vom Smp. 208-210° erhalten. - UV. (CH₃CN): 344 S (4,33), 333,5 (4,38), 232 (4,33); min. 265,5 (3,72). - IR.: 1642, 1602, 1581, 1572, 1560. IR. (CHCl₃): 1628, 1583, 1569. - ¹H-NMR.: 7,95-7,65 (m, 2 arom. H); 7,65-6,9 (m, 8 arom. H);

3,21 (s, CH₃N); 3,06 (s, (CH₃)₂N); 1,54 und 1,20 (2 s, (CH₃)₂C). ¹H-NMR. (DMF): 8,1-6,9 (m, 10 arom. H); 3,08 (s, CH₃N und (CH₃)₂N); 1,54 und 1,32 (2 s, (CH₃)₂C). - ¹³C-NMR.: s. *Tabelle*; 138,0-123,5 (arom. C). ¹³C-NMR. (DMSO-d₆): 137,2 und 137,0 (2 quartäre arom. C); 128,7-122,7 (6 Linien, arom. C). - MS.: 363* (M^+ , C₂₂H₂₅N₃O₂, 52), 348 (M^+ - CH₃, 16), 258* (C₁₅H₂₀N₃O, 100), 245* (C₁₄H₁₇N₂O₂, 4), 230 (6), 141* (C₇H₁₃N₂O, 19), 139 (9), 118* (C₈H₈N, 72), 105* (C₇H₅O, 14), 77 (20).

C₂₂H₂₅N₃O₂ (363,46) Ber. C 72,70 H 6,93 N 11,56% Gef. C 72,61 H 6,92 N 11,50%

Ein gleicher Ansatz wurde nach 2stdg. Rühren bei 50° eingeengt, und mittels präp. DC. (Aluminiumoxid, Essigester/Hexan 3:1) wurden zwei Produkte isoliert. Das Produkt mit dem grösseren Rf-Wert erwies sich als identisch mit (Z)-11, dem isomeren Produkt mit dem kleineren Rf-Wert schreiben wir die Konstitution von (E)-11 zu¹⁴). Umkristallisieren aus CH₃CN/Äther ergab (E)-11 als farblose Kristalle vom Smp. 186,9-187,8. - UV. (CH₃CN): 346,5 S (4,39), 336,5 (4,45), 231,5 (4,25); min. 269 (3,72). - IR.: 1632, 1600, 1580, 1560. IR. (CHCl₃): 1626, 1600, 1570, 1560. -¹H-NMR.: 7,95-6,9 (10 arom. H); 3,20 (s. CH₃N); 3,07 (s. (CH₃)₂N); 1,58 und 1,06 (2 s. (CH₃)₂C). -MS.: 363 (M^+ , 45), 348 (7), 258 (94), 245 (6), 230 (10), 141 (19), 139 (10), 118 (100), 105 (20), 77 (35).

1.2. Thermische Umwandlung der Stereoisomeren (Z)- und (E)-11. 1.2.1. Die Stereoisomeren (Z)-11 (Probe 1) und (E)-11 (Probe II) wurden je in 0,3 ml Deuteriochloroform gelöst und unmittelbar danach im ¹H-NMR. untersucht (s. Fig. 1, Spektren A, B). Dann wurden je 0,1 ml der Lösungen gemischt (Probe III) und wiederum das ¹H-NMR. aufgenommen (Fig. 1, Spektrum C). Nach 10tägigem Stehenlassen bei RT. zeigten alle drei Proben dasselbe Spektrum wie die Mischprobe (Fig. 1, Spektrum C). Nach 6 Monaten Stehen bei RT. wurden die gebildeten Kristalle der Proben II und III abfiltriert, mit Äther gewaschen und getrocknet. Ihre ¹H-NMR. in CDCl₃ waren mit dem ¹H-NMR. von (Z)-11 (Fig. 1, Spektrum A) identisch.

1.2.2. Eine Lösung des Stereoisomeren (Z)-11 in DMF-d₇ wurde ¹H-NMR.-spektroskopisch bei verschiedenen Temperaturen untersucht (*Fig. 2*). Bei 150° wurde Koaleszenz der zwei Singulette für (CH₃)₂C beobachtet. Beim Abkühlen auf 28° wurde das Spektrum eines *ca.* (1:1)-Gemisches von (Z)-11 und (E)-11 erhalten. Nach dem Verdampfen des Lösungsmittels wurden *ca.* 85% des eingesetzten Materials als Kristalle vom Smp. 208-210° zurückisoliert, die sich im ¹H-NMR. als reines (Z)-11 erwiesen.

1.3. Oxydative Spaltung von 11. Eine Lösung von 410 mg (1,13 mmol) (Z)-11 in 10 ml Chloroform wurde mit 10 ml Wasser überschichtet und bei RT. portionenweise mit Kaliumpermanganat (ca. 600 mg) versetzt, bis im DC. kein Edukt mehr nachweisbar war (24 Std.). Danach wurde Wasser (40 ml) zugegeben und mehrmals mit Chloroform extrahiert. Nach dem Eindampfen der Chloroformphasen, präp. DC. (Kieselgel, Essigester) und Umkristallisation wurden 145 mg (54%) N-Benzoyl-N-methylbenzamid [26] (14) und 37,2 mg (21,1%) 4-Dimethylamino-5,5-dimethyl-3-oxazolin-2-on (15) erhalten. 14: farblose Kristalle, Smp. 94,5-94,8° (C₂H₅OH/H₂O) ([26]: 94-95°). – UV.: 242 (4,06), 231 (4,06). – IR. (CHCl₃): 1691, 1656, 1650. – ¹H-NMR.: 7,6-7,1 (m, 10 arom. H); 3,50 (s, CH₃N). – MS.: 239 (M^+ , 20), 211 (8), 118 (6), 105 (100), 77 (40).

C₁₅H₁₃NO (239,27) Ber. C 75,29 H 5,47 N 5,85% Gef. C 75,33 H 5,56 N 6,08%

15: farblose Kristalle, Smp. 156,3-156,5° (Äther). - UV.: 234 (4,26). - IR.: 1748, 1620. IR. (CHCl₃): 1758, 1611. - ¹H-NMR.: 3,25 und 3,21 (2 s im Verhältnis von 1:1, (CH₃)₂N); 1,66 (s, (CH₃)₂C). - MS.: 156* (M^+ , C₇H₁₂N₂O₂, 31), 141 (M^+ - CH₃, 93), 128* (C₆H₁₂N₂O, 9), 111* (C₆H₁₁N₂, 14), 99* (C₄H₇N₂O, 100).

C₇H₁₂N₂O₂ (156,18) Ber. C 53,83 H 7,74 N 17,93% Gef. C 54,11 H 7,46 N 17,79%

1.4. Addition von 3-Dimethylamino-2-methyl-2-phenyl-2H-azirin (1b). Zu einer Lösung von 210,0 mg (0,84 mmol) 5 in 5 ml Acetonitril wurden 120 mg (1,07 mmol) 1b in 1 ml Acetonitril gegeben. Nach 14stdg. Rühren bei RT. wurde auf ca. 0,5 ml eingeengt und das Produkt mittels präp. DC.

¹⁴) Die Isolierung von (E)-11 war nicht reproduzierbar.

(Kieselgel, Essigester) isoliert: 241,4 mg (68%) N-[a-(4'-Dimethylamino-5'-methyl-5'-phenyl-3'-oxazolin-2'-yliden)benzyl]-N-methylbenzamid (12)¹⁵) als farblose Kristalle vom Smp. 200,5-201,6° (CH₃CN). – UV. (CH₃CN): 348 S (4,37), 335 (4,46), 325 S (4,43), 230,5 S (4,23); min. 268,5 (3,71). – IR.: 1642, 1601, 1575, 1562. IR. (CHCl₃): 1625, 1601, 1583, 1568. – ¹H-NMR.: 7,8–6,95 und 6,6–6,4 (2 m, 15 arom. H); 3,21 und 3,20 (2 s im Verhältnis ca. 1:3, CH₃N von zwei Stereoisomeren); 2,80 (br. s, (CH₃)₂N); 1,91 und 1,31 (2 s im Verhältnis ca. 3:1, H₃C-C(5) von zwei Stereoisomeren). – ¹³C-NMR.: s. Tabelle; 138,2–123,9 (arom. C). – MS.: 320 ($M^+ - C_6H_5CO$, 27), 201 (8), 118 (100), 105 (27), 91 (11), 77 (52).

C₂₇H₂₇N₃O₂ (425,53) Ber. C 76,21 H 6,40 N 9,87% Gef. C 75,92 H 6,25 N 9,80%

1.5. Oxydative Spaltung von 12. Wie unter 1.3 beschrieben wurden 283,9 mg (0,69 mmol) 12 mit 450 mg Kaliumpermanganat versetzt. Aufarbeitung mittels präp. DC. und Umkristallisation ergaben 78,0 mg (52,1%) 4-Dimethylamino-5-methyl-5-phenyl-3-oxazolin-2-on (16), 63,5 mg (38,7%) 14 und 50,1 mg (53,6%) N-Methylbenzamid. 16: farblose Kristalle, Smp. 150,6-151,4° (Äther). - UV.: 235 (4,23). - IR.: 1763, 1630, 1620. IR. (CHCl₃): 1765, 1616. - ¹H-NMR.: 7,5-7,2 (schmales *m*, 5 arom. H); 3,24 und 2,76 (2 s, (CH₃)₂N); 2,02 (s, H₃C-C(5)). - ¹³C-NMR.: s. Tabelle; 135,8 (1 quartäres arom. C); 129,5, 129,1 und 125,7 (arom. C). - MS.: 218* (M^+ , C₁₂H₁₄N₂O₂, 100), 203 (M^+ - CH₃, 19), 141* (C₆H₉N₂O₂, 31), 105* (C₇H₅O, 43), 77 (31), 70 (74).

C₁₂H₁₄N₂O₂ (218,25) Ber. C 66,03 H 6,46 N 12,83% Gef. C 65,97 H 6,18 N 12,71%

N-Methylbenzamid: farblose Kristalle, Smp. 79,2-79,8° ([32]: 82°). - IR. (CHCl₃): 3465, 3360 (NH), 1660 und 1540 (Amid). - ¹H-NMR.: 7,95-7,1 (*m*, 5 arom. H); 7,0 (br. s, HN); 2,96 (*d*, J=5, CH₃N). - MS.: (M^+ , 29), 134 (55), 105 (100), 77 (78).

C₈H₉NO (135,16) Ber. C 71,08 H 6,71 N 10,36% Gef. C 71,39 H 6,95 N 10,47%

2. Umsetzung von 2,4-Diphenyl-1,3-dithiolylium-5-olat (6) mit 3-Dimethylamino-2*H*-azirinen (1). – 2.1. Addition von 3-Dimethylamino-2, 2-dimethyl-2H-azirin (1a). Zu 880 mg (3,26 mmol) 6 in 8 ml Acetonitril wurden 400 mg (3,57 mmol) 1a in 2 ml Acetonitril gegeben. Nach 6stdg. Erhitzen unter Rückfluss wurde das Lösungsmittel abgedampft und die Produkte mittels präp. DC. (Aluminium-oxid, Pentan/Äther 1:1) voneinander getrennt. Nach Umkristallisation wurden 195,0 mg (22,2%) 3,4-Diphenyl-1,2-dithia-3-cyclopenten-5-on (21) und 215,0 mg (17,3%) Dithiobenzoesäure- $[a-(4'-dimethyl-amino-5',5'-dimethyl-3'-oxazolin-2'-yliden)benzyl/ester (19A) erhalten. 21: geibliche Kristalle, Smp. 116,6-117,0° (Äther) ([28a]: 116°). – UV: 332,5 (3,83), 282,5 (3,83), 236,5 S (4,06); min. 237 (3,79), 264 (3,77). – IR: 1660. IR. (CHCl₃): 1657, 1650. – ¹H-NMR:: 7,4-7,0 (m, arom. H). – MS. [28b]: 270 (<math>M^+$, 67), 242 (10), 178 (100).

C₁₅H₁₀OS₂ (270,37) Ber. C 66,64 H 3,73 S 23,72% Gef. C 66,83 H 3,83 S 23,35%

19A: dunkelrote Kristalle, Smp. 192,8–193,2° (Essigester). - UV. (CH₃CN); 440 (3,21), 317 (4,47), 231 (4,35); min. 398 (2,91), 253,5 (4,04). - IR.: 1639, 1599, 1570, 1551. - IR. (CHCl₃):1638, 1595 S, 1586 S, 1565, 1545 S. - ¹H-NMR.: 8,2-8,0 (m, 2 arom. H); 7,85-7,7 (m, 2 arom. H); 7,5-7,0 (m, 6 arom. H); 3,17 (s, (CH₃)₂N); 1,59 (s, (CH₃)₂C). - MS.: 382 (M^+ , 18), 261 (70), 139 (7,5), 121 (100), 86 (7,5), 77 (20).

 $\begin{array}{ccc} C_{21}H_{22}N_2OS_2 \\ (382,54) \end{array} \begin{array}{cccc} Ber. \ C\ 65,95 \\ Gef. \ , \ 65,98 \\ , \ 5,60 \\ , \ 7,38 \\ , \ 16,71\% \end{array} \begin{array}{c} S\ 16,76\% \\ , \ 7,38 \\ , \ 16,71\% \end{array}$

Ein gleicher Ansatz wurde wie üblich mittels präp. DC. aufgearbeitet. Die Zone, welche der Substanz 19 entsprach, wurde eluiert, das Lösungsmittel abgedampft, der rote Festkörper mit Äther gewaschen und ohne Kristallisation dessen IR. und ¹H-NMR. aufgenommen. Das ¹H-NMR. zeigte Signale, die einem Gemisch der Stereoisomeren 19A und 19B entsprachen. Nach dem Lösen des Gemisches in Essigester lieferte langsame Kristallisation während *ca.* 48 Std. reines 19A. Eindampfen der Mutterlauge ergab das Stereoisomere 19B als dunkelrotes Öl. - IR. (CHCl₃): 1645,

¹⁵) Die beiden Stereoisomeren (E)- und (Z)-12 (vgl. ¹H-NMR.) wurden nicht voneinander getrennt.

1597 S, 1575 S, 1563, 1542 S. – ¹H-NMR.: 8,2–7,9 (*m*, 2 arom. H); 7,8–7,0 (*m*, 8 arom. H); 3,04 (*s*, (CH₃)₂N); 1,66 (*s*, (CH₃)₂C).

2.2. Thermische Umwandlung der Stereoisomeren 19A und 19B. Das rote Öl 19B wurde in Äther gelöst und die nach 24 Std. ausgefallenen Kristalle isoliert (ca. 50% des eingesetzten Materials). Das ¹H-NMR. dieser Kristalle war identisch mit demjenigen von 19A. Das aus der Mutterlauge zurückgewonnene rote Öl war gemäss ¹H-NMR. 19B.

Nach 48stdg. Stehenlassen der einheitlichen Stereoisomeren 19A bzw. 19B in Deuteriochloroform bei RT. wurde in beiden Fällen ein (1:1)-Gemisch von 19A und 19B erhalten $({}^{1}H$ -NMR.).

2.3. Oxydative Spaltung von 19. Wie unter 1.3 beschrieben wurden 78,8 mg (0,20 mmol) 19 mit 120 mg Kaliumpermanganat oxydativ gespalten. Das erhaltene 15 (12,1 mg; 38%) wurde mittels ¹H-NMR., IR. und Misch-Smp. identifiziert.

2.4. Addition von 3-Dimethylamino-2-methyl-2-phenyl-2H-azirin (1b). Zu 400 mg (1,48 mmol) 6 in 5 ml Acetonitril wurden 210 mg (1,88 mmol) Azirin 1b in 1 ml Acetonitril gegeben und unter Rückfluss 6 Std. gerührt. Nach weiterem 14stdg. Rühren bei RT. wurde wie üblich mittels präp. DC. (Aluminiumoxid, Pentan/Äther 1:1) aufgearbeitet. Nach Umkristallisation wurden 12,0 mg (3,0%) 21 und 254,4 mg (38,7%) Dithiobenzoesäure-[a-(4'-dimethylamino-5'-methyl-5'-phenyl-3'-oxazolin-2'-yliden)benzylJester (20) als dunkelrote Kristalle vom Smp. 162,1-163,0° (Äther) erhalten. – UV. (CH₃CN): 440 (3,46), 318 (4,44), 232 (4,32); min. 402 (3,04), 256 (4,04). – IR.: 1640, 1565, 1548. IR. (CHCl₃): 1640, 1580, 1575, 1565. – ¹H-NMR.: 8,1-7,7 (m, 3 arom. H); 7,5-7,0 (m, 12 arom. H); 2,94 (br. s, (CH₃)₂N); 1,96 (s, H₃C-C(5))¹⁶). – ¹³C-NMR.: s. Tabelle; 144,5-124,2 (arom. C und C(a)). – MS.: 444 (M^+ , 31), 323 (81), 296 (26), 293 (25), 287 (26), 215 (21), 121 (100), 77 (34).

 $\begin{array}{cccc} C_{26}H_{24}N_2OS_2 & \text{Ber. C } 70,23 & \text{H } 5,44 & \text{N } 6,30 & \text{S } 14,42\% \\ (444,61) & \text{Gef. }, 70,24 & ,, 5,50 & ,, 6,56 & ,, 14,04\% \end{array}$

2.5. Oxydative Spaltung von 20. Wie unter 1.3 beschrieben wurden 71,3 mg (0,16 mmol) 20 mit 250 mg Kaliumpermanganat oxydiert; Ausbeute an 16 32,9 mg (94,3%).

3. Umsetzung von 4-Acetyl-3-methyl-2-phenyloxazolylium-5-olat (17) mit 3-Dimethylamino-2,2-dimethyl-2H-azirin (1a). Einer Lösung von 104,9 mg (0,48 mmol) 17¹⁷) in 3 ml *t*-Butylalkohol wurden 60 mg (0,54 mmol) 1a zugegeben. Nach 16stdg. Rühren bei 30° wurde 11 Std. auf 63° erhitzt, die Lösung anschliessend auf 0,5 ml eingeengt und das Produkt mittels präp. DC. (Kieselgel, Essigester) gereinigt. Als einziges Produkt wurden 97,3 mg (69,2%) 2-(N-Methylbenzamido)-3-oxobuttersdure-t-butylester (18) als farbloses Öl isoliert, das bei 120°10⁻¹ Torr destilliert. Die Verbindung liegt laut ¹H-NMR. zu etwa 90% in der Enolform vor. – UV.: 263 S (3,85), 244,5 (3,91). – IR. (CHCl₃): 1730, 1645 mit Schultern bei 1660, 1654 und 1623. – ¹H-NMR.: 12,25 (s, Enol-H); 7,5-7,2 (m, 5 arom. H); 3,14 (s, CH₃N); 1,94 (s, CH₃CO); 1,45 (s, (CH₃)₃C). – MS.: 291 (M^+ , 2), 248 (2), 235 (17), 218 (4), 113 (21), 105 (100), 77 (25).

C₁₆H₂₁NO₄ (291,34) Ber. C 65,96 H 7,27 N 4,81% Gef. C 65,91 H 7,09 N 4,72%

LITERATURVERZEICHNIS

- [1] M. Rens & L. Ghosez, Tetrahedron Letters 1970, 3765.
- [2] H. Heimgartner, Chimia 33, 111 (1979).
- [3] U. Schmid, H. Heimgartner & H. Schmid, Helv. 62, 160 (1979).
- [4] S. Chaloupka, H. Heimgartner, H. Schmid, H. Link, P. Schönholzer & K. Bernauer, Helv. 59, 2566 (1976).
- ¹⁶) Nach 14tägigem Stehen der Lösung bei RT. waren für H₃C-C(5') zwei Singulette bei 2,06 und 1,95 ppm im Verhältnis von ca. 1:2 zu erkennen, die wahrscheinlich den Stereoisomeren (E)- und (Z)-20 entsprechen.
- ¹⁷) Die Verbindung 17 wurde uns freundlicherweise von Dr. G. Fráter, Socar AG, Dübendorf, zur Verfügung gestellt; Smp. 144-146°. IR.: 1755 S, 1745, 1626, 1590. IR. (CHCl₃): 1761, 1613, 1593. ¹H-NMR.: 7,8-7,3 (5 H); 4,14 (3 H); 2,45 (3 H). MS.: 217, 191, 148, 105, 77.

- [5] a) E. Schaumann, E. Kausch, J.-P. Imbert, K.-H. Klaska & R. Klaska, J. chem. Soc. Perkin II 1977, 466; b) E. Schaumann, S. Grabley, K.-D. Seidel & E. Kausch, Tetrahedron Letters 1977, 1351; E. Schaumann, E. Kausch, S. Grabley & H. Behr, Chem. Ber. 111, 1486 (1978).
- [6] E. Schaumann, E. Kausch & W. Walter, Chem. Ber. 110, 820 (1977).
- [7] U. Schmid, H. Heimgartner, H. Schmid, P. Schönholzer, H. Link & K. Bernauer, Helv. 58, 2222 (1975).
- [8] E. Schaumann, E. Kausch & W. Walter, Chem. Ber. 107, 3574 (1974).
- [9] M. Rens, Dissertation Université Catholique de Louvain 1973.
- [10] G. Mukherjee-Müller, H. Heimgartner & H. Schmid, in Vorbereitung.
- [11] W.D. Ollis & Ch.D. Ramsden, Adv. heterocycl. Chemistry 19, 1 (1976).
- [12] V. Nair & K.H. Kim, Heterocycles 7, 353 (1977); P. Gilgen, H. Heimgartner, H. Schmid & H.-J. Hansen, ibid. 6, 143 (1977); A. Padwa, Accounts chem. Res. 9, 371 (1976).
- [13] R. Huisgen, E. Funke, F.C. Schaefer & R. Knorr, Angew. Chemie 79, 321 (1967); H.O. Bayer, R. Huisgen, R. Knorr & F.C. Schaefer, Chem. Ber. 103, 2581 (1970).
- [14] E. Funke & R. Huisgen, Chem. Ber. 104, 3222 (1971).
- [15] R. Huisgen, H. Gotthardt, H.O. Bayer & F.C. Schaefer, Chem. Ber. 103, 2611 (1970).
- [16] J. Lukáč, H. Heimgartner & H. Schmid, Chimia 31, 138 (1977); J.A. Myers, W.W. Wilkerson & S.L. Council, J. org. Chemistry 40, 2875 (1975); H. Matsukubo & H. Kato, Bull. chem. Soc. Japan 49, 3333 (1976).
- [17] H. Gotthardt & B. Christl, Tetrahedron Letters 1968, 4743; H. Gotthardt, M.C. Weisshuhn & B. Christl, Chem. Ber. 109, 740 (1976).
- [18] H. Gotthardt & C. M. Weisshuhn, Chem. Ber. 111, 2021 (1978).
- [19] J. Lukáč, J.H. Bieri & H. Heimgartner, Helv. 60, 1657 (1977).
- [20] Unveröffentlichte Ergebnisse.
- [21] N. Naulet, M.L. Filleux, G.J. Martin & J. Pornet, Org. magn. Res. 7, 326 (1975); G. Häfelinger, in 'The Chemistry of Amidines and Imidates', Herausgeber S. Patai, J. Wiley & Sons, London 1975, S. 69.
- [22] P. Hoet, Dissertation Université Catholique de Louvain 1975; B.P. Chandrasekhar, U. Schmid, R. Schmid, H. Heimgartner & H. Schmid, Helv. 58, 1191 (1975); B.P. Chandrasekhar, H. Heimgartner & H. Schmid, ibid. 60, 2270 (1977).
- [23] K. Dietliker, U. Schmid, G. Mukherjee-Müller & H. Heimgartner, Chimia 32, 164 (1978).
- [24] U. Widmer, H. Heimgartner & H. Schmid, Helv. 61, 815 (1978).
- [25] E. Schaumann & S. Grabley, Liebigs Ann. Chem. 1978, 1568.
- [26] O. Mumm, H. Hesse & H. Volquartz, Chem. Ber. 48, 379 (1915).
- [27] A. Foucaud & P. Plusquellec, Bull. Soc. chim. France 1968, 3813; S.-O. Chua, M.J. Cook & A.R. Katritzky, J. chem. Soc. Perkin II 1974, 546.
- [28] a) F. Boberg & J. Knoop, Liebigs Ann. Chem. 708, 148 (1967); b) C. Th. Pedersen & J. Møller, Acta chem. Scand. 26, 250 (1972).
- [29] L. Ghosez, A. Demoulin, M. Henriet, E. Sonveaux, M. van Meersche, G. Germain & J.-P. Declerg, Heterocycles 7, 895 (1977).
- [30] H. Kato, T. Shiba, H. Yoshida & S. Fujimori, Chem. Commun. 1970, 1591; H. Kato, T. Shiba & Y. Miki, ibid. 1972, 498.
- [31] N.S. Narasimhan, H. Heimgartner, H.-J. Hansen & H. Schmid, Helv. 56, 1351 (1973).
- [32] N.I. Gavrilov, A.V. Koperina & M.M. Klyuchareva, Bull. Soc. chim. France 1945, 773.